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Abstract 

 

Collecting information from sampled units over the Internet or by mail is much more cost‒efficient than conducting 

interviews. These methods make self‒enumeration an attractive data‒collection method for surveys and censuses. Despite the 

benefits associated with self‒enumeration data collection—in particular Internet-based data collection— self‒enumeration 

can produce low response rates compared to interviews. To increase response rates, non‒respondents are subject to a mixed 

mode of follow‒up treatments, which influence the resulting probability of response, to encourage them to participate. 

Because response occurrence is intrinsically conditional, we preliminary record response occurrence in discrete intervals, and 

we then characterize the probability of response by a discrete time hazard. This approach facilitates examining when a 

response is most likely to occur and how the probability of responding varies over both time and follow‒up treatments. We 

use regression analysis to investigate the effect of mixed‒mode on the response probability. Factors and interactions are 

commonly treated in regression analyses, and have important implications for the interpretation of statistical models. The 

nonresponse bias can be avoided by multiplying the sampling weight of respondents by the inverse of an estimate of the 

response probability. Estimators and associated variance estimators of model parameters as well as of parameters of interest 

are studied. We take into account correlation over time for the same unit in variance estimation. The problem of optimal 

resources allocation within stages of the survey design is also investigated. 

 

Key Words: Event history analysis; Longitudinal data; Maximum likelihood; Optimal resources allocation; Partially 

classified units. 

 

1. Introduction 

 

Mixing modes of follow‒up and data collection offers the possibility of offsetting the disadvantages of one mode with the 

advantages of another. For example, recognizing that the Internet, unlike mail, offers the ability to move data capture and 

editing closer to the respondent, many statistical agencies are now offering electronic questionnaires as a voluntary option to 

both improve quality of statistical processes and reduce survey costs. This potential increase in survey quality in combination 

with the fact that collecting information from sampled units over the Internet or by mail is much more cost‒effective than 
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conducting interviews makes self‒enumeration an attractive data‒collection method for surveys and censuses. Although there 

are benefits associated with self‒enumeration, in particular Internet‒based surveys, as well as an expected wider application 

of this approach in future, self‒enumeration brings particular difficulties to surveys and censuses. Observed values of typical 

variable of interest y  might depend on the variable 
my  associated with mode m  of data collection, Mm ,...,1 , where M  is 

the number of modes of data collection under consideration for a given survey. In principle, each unit k  of the finite 

population P  of size N  has all responses, i.e., a response kmy ;  that would have resulted if it had chosen mode m . Since each 

unit receives or chooses only one mode, only one response is observed. If the variable of interest is defined uniquely and 

independently from each mode, then kmy ;  represents the value the unit k  believes is the correct answer to y , resulting from 

the medium of mode m  in which the question is presented to the unit. We assume that census parameter )(yNΘ  associated 

with the variable of interest y  is defined as solution to an estimating equation (EE) of the form  

 0ΘvΘsS(Θ  )();() kk y , (1.1) 

where 
k  is the sum over all the population units, the known function );( Θs ky  is a 

q ‒dimensional vector‒valued function 

of 
ky  and the know function )(Θv  allows for explicitly defined parameters. For linear and logistic regression models, 

))(();( ΘΘs
T

kkkkk yy χχ   and 0Θv )( , where )()( yE y

T Θχ , T

q ),...,( 1 
 χ  is a 1q  vector of explanatory variables, 

T

q ),...,( 1 
Θ  is the 1q vector of model parameter and yE  denotes model expectation. For the special case of the finite 

population total 
kk yY  , 

kk yy );( Θs , 
N)(Θs  and YN  . 

 

Similarly, the thm  EE of the vector parameter )(; mNm yΘ
mΘ  associated with mode m  is of the form 

 0ΘvΘsΘS  )();()( ; mmkmkm y , Mm ,...,1 . (1.2) 

The solution to (1.2) constitutes both the census vector parameter )(; mNm yΘ  and an estimator of the model parameter 
mΘ . 

 

One of the main objectives of the mixed‒mode of data collection is to influence the unit to get its cooperation, regardless of 

its preference for data‒collection mode. The overall response indicator for unit k  for the combined modes can be defined as 

km

M

mkm

M

mk rrr ;1;1 )1(1    and the overall probability of response can be represented in the mixture form km

dc

km

M

mk ;

)(

;1   , 

where kmr ;  is the response indicator by mode m , )(

;

dc

km  is the probability that respondent k  uses mode m , )( ;; kmrkm rE  is the 

associated response probability, 
rE  denotes expectation with respect to the response mechanism and the superscript ( dc ) 

stands for data collection. If only mode m  is assigned to unit k  then 1)(

; dc

km  and 0)(

; dc

ki  for mi  . If the mixed‒mode of 

data collection can increase the overall response rates, we will, of course, be pleased to quantify and examine the contribution 

of each mode on the response probability. In reality, self‒enumeration can produce low response rates in comparison to 

interviews. To gain non‒respondents’ cooperation and therefore maximize survey quality, each non‒respondent is assigned to 

a follow‒up strategy, where each strategy consists of a mixed‒mode of predefined follow‒up treatments. Different costs are 

associated with different follow‒up treatments. For example, face‒to‒face follow‒up is more expensive than telephone 

follow‒up. Currently, in some business surveys, to reduce the global cost of data collection, follow‒up for nonresponse is 
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performed on only a portion of non‒respondents. These units are often identified in a deterministic way based, for example, 

on their expected contribution to the estimate. In addition, since a significant number of units are never followed up for 

nonresponse, the final response rate can be very low. The nonresponse bias can be avoided by multiplying the sampling 

weight of respondents by the inverse of the response probability. Since the response probability is unknown, estimated 

probability is used. As noted by Rosenbaum (1987) and others, estimators using the estimated response probability can be 

more efficient than estimators using the true response probability.   

 

Given the above issues, one question should first be of particular interest to statistical agencies: How should both the 

response probabilities under mixed‒mode and the influence of the follow‒up treatments on the resulting probability of 

response be modelled? Other relevant questions include the following: If one factor of the mixed‒mode is improved, what 

will be the effect on the performance of the response mechanism? How can we estimate the response probability due to a 

particular mixed‒mode factor of interest with the presence of the other mixed‒mode factor? As intensive follow‒up is 

expensive, a follow‒up strategy is needed to make wise use of global resources compared to the quality of the estimates. 

Since a follow‒up treatment could produce estimates with better quality, the strategy should consist of allocating 

non‒respondents to different treatments while controlling for data collection costs. In an attempt to discuss some of these and 

other issues, we first characterized the response probability by a discrete‒time hazard (Demnati, 2014) and we used 

regression analysis to investigate the effect of mixed‒mode on the response probability. We estimated the regression (or 

nuisance) parameter using the EM algorithm (Hartley, 1958; Dempster et al., 1977) to then estimate the parameter of interest. 

Our present work below is organized as follows: in Section 2, we briefly review the discrete‒time hazard approach to the 

analysis of response indicators; in Section 3, estimators of the regression parameter are derived using Newton‒Raphson 

iterative method, and estimators of the parameters of interest under mixed‒mode surveys are studied; and, in Section 4, 

linearization variance estimators are studied and optimal resources allocation within stages of the survey design is 

determined. 

 

2. Modeling Response Indicators as Discrete‒time Hazard 

 

2.1 Discrete‒time Hazard 

 

Consider a homogeneous sample of units, each at risk of experiencing a single target event,  ̶  responding. The target event is 

nonrepeatable. To record response occurrence in discrete intervals, we divided continuous time of the entire data collection 

period into a sequence of continuous time periods: 1, 2, and so on. Suppose the duration of data collection is made up of I  

time periods. Let t  represent the discrete random variable that indicates the time period i  when the response occurs for a 

randomly selected unit from the sample. Then each unit k  is observed until some period 
kI , with II k  . Observation of the 

unit could be discontinued for two reasons: 1) the unit responds; or 2) the survey ends. In the first case, 
kIt  . In the second 

case, it is only known that It  . Units with It   are right‒censored—it is unknown whether they respond. Because response 

occurrence is intrinsically conditional, we characterize t  by its conditional probability function—the distribution of the 
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probability that a response will occur in each time period given that it has not already occurred in a previous time period—

known as the discrete‒time hazard function. Discrete‒time hazard, ),( βxkkih , 
kih  for short, is defined as the conditional 

probability that unit k  will respond in time period i , given that the unit did not respond prior to i : 

 )|Pr( itithki  , (2.1) 

where 
kx  refers to both time‒invariant and time‒varying explanatory variables and β  is the unknown 1rq  vector 

parameter to be estimated. For unit with it  , the probability of obtaining a response at time period i  could be expressed in 

terms of the hazard as  

 )1()Pr( 1

1 kj

i

jki hhit  

 . (2.2) 

For units with it  , the probability of obtaining a response can be expressed as  

 )1()Pr( 1 kj

i

j hit   . (2.3) 

We assume that every unit in the sample lives through each successive discrete time period until the unit responds or is 

censored by the end of data collection. The use of mixed‒mode modifies the expression for the hazard function in (2.1) as 

mki

dc

km

M

mki hh |

)(

;1 , where mkih |  is the discrete‒hazard function for mode m . The marginal probability of obtaining a response 

after I  time periods is given by 

 )(

11 )1(1 i

k

I

iki

I

ik h    , (2.4) 

where )1(1

1

)(

kj

i

jki

i

k hh  

 . It is easily seen from (2.4) that 
k  increases (or stays the same) as the level of effort increases, 

where the level of effort is seen in terms of follow‒up treatments and data‒collection periods. This suggests that costs and 

benefits of increasing the level of effort should be explored given that, in some circumstances, there a number of follow up 

treatments made with a high percentage of cost expanded to get values from a few non-respondents. 

 

2.2 Influence of Follow‒up on Response Probability 

 

We expressed the inverse link function of the hazard rate as a function of explanatory variables 
kix  and a vector parameter β  

to be estimated. For units under self‒enumeration data collection without any follow‒up, the inverse link form of the 

hazard‒rate is expressed as 

 ),()( )0()0(-1
βxkikihg  , (2.5) 

for known function (.) , where )0(

kix  is the vector of explanatory variables for self‒enumeration without any follow‒up, )0(β  

is the associated unknown vector parameter to be estimated, )0(

kiki xx  , )0(ββ   and (.)g  is a link function—although the link 

function is generally used to transform (or to link) the conditional mean to the linear predictor βxT

ki . For example, aag )(  

with βxβx
T

kiki ),(  gives a linear regression model and )}exp(1/{)exp()( aaag   with βxβx
T

kiki ),(  gives a logistic 

regression model for binary responses 
kir , where 

kir  is a sequence of response indicators defined for each unit k  whose 

values are defined as 1kir  if the unit does respond in period i  and 0kir  if the unit does not respond in period i . 
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Additional influences on response probability can be investigated by adding further predictors to the initial discrete‒time 

hazard model. For instance, the following model differs from the model in (2.5) by the inclusion of the time‒variant 

follow‒up predictor )1()1(

kiki x , the influence of which is captured by the parameter )1(β :  

 ),;,()( )1()1()1()0()0(-1
βxβx kikikikihg  , (2.6) 

where the value of )1((

ki  is set to 1 if the first follow‒up treatment is started, or set to 0 if this is not the case, with 

TT

kiki

T

kiki ),( )1()1()0(
xxx   and TTT ),( )1()0( βββ  . Note that (2.6) can be used to define different slopes and intercepts, in which case 

the parameter )1(β  reflects the changes in the intercepts and in the slopes associated with changing from self‒enumeration 

only to self‒enumeration followed by the first follow‒up treatment. For example, in the specification 

)1()1()0()0(),( βxβxβx
T

ki

T

kiki  , Ii ,...,1 , with )0(

1

)0(

0

)0()0(

ikii

T

ki x  βx  and )( )1(

1

)1(

0

)1()1()1(

ikiiki

T

ki x  βx , the regression parameters 

)0(

0i , )0(

1i  and the values 
kix  represent respectively the intercept, the slope and the predictor associated with self‒enumeration 

data collection in time period i . We have T

kIkkIkki xxDD ),...,,,...,( )0()0(

1

)0()0(

1

)0( x  and T

II ),...,,,...,( )0(

1

)0(

11

)0(

0

)0(

01

)0( β , where 1)0( kiD , 

kiki xx )0( , 0)0( kjD  and 0)0( kjx  for ij  . The vector predictor follow‒up is given by T

kIkkIkki xxDD ),...,,,...,( )1()1(

1

)1()1(

1

)1( x  and the 

changes due to the follow‒up in the intercepts and slopes are reflected by vector parameter T

II ),...,,,...,( )1(

1

)1(

11

)1(

0

)1(

01

)1( β , 

where 1)1( kiD , 
kiki xx )1( , 0)1( kjD  and 0)1( kjx  for ij  . To increase response rates, non‒respondents are subject to intensive 

multiple follow‒ups by telephone or other treatments to encourage them to participate. A follow‒up treatment can take the 

form of mailed reminders, emailed reminders, telephone calls or in‒person interviews. The follow‒up process through 

treatments is conducted using data collection calendars with a specific strategy for each sampled unit. In case of T1  

follow‒up treatments, the inverse link form of the hazard‒rate can be expressed as ),()( βxkiki

-1 hg  , where 

TT

kiki

T

kiki

T

kiki ),...,,( )T()T()1()1()0(
xxxx   and TTTT ),...,,( )T()1()0( ββββ  . 

 

Consider the case of 1T   where 
1T  consists of intensive follow‒up and 

0T  consists of sending the questionnaire, and 

suppose for simplicity the case in which the response outcome is instant. After collecting the response from self‒enumeration 

respondents, follow‒up is performed in a deterministic way—non‒respondents with 
uk cu   are assigned to treatment 

1T , 

where 
uc  is a predetermined constant and u  is an auxiliary variable with values available for all sampled units. Suppose all 

units under 
1T  responded, while the other units have still not responded. We have 11)1( 11  kkk hh  for unit k  with 

uk cu   and 
111 0)1( kkkk hhh   for units with 

uk cu  . This highlights the significant effect of follow-up on the 

probabilities of response. 

 

3. Estimation Under Mixed‒mode Survey 

 

3.1 Mixed‒mode Indicator Variables  
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Suppose we have S  follow‒up strategies, and define a vector of follow‒up strategy indicator variables as 1)(

; f

ksl  if unit k  is 

assigned to strategy s , and 0)(

; f

ksl  if not, where  Tf

kS

f

k

f

k ll ),...,( )(

;

)(

;1

)( l  are realizations of independent distributed variables 

according to a multinomial distribution, ),1( )( f

kSMult φ , )(),...,( )()(

;

)(

;1

)( f

kf

Tf

kS

f

k

f

k E lφ    is the vector of probabilities with 

1)(

;1  

f

ks

S

s  , 
fE  denotes expectation under the strategy allocation model, and the superscript " f " stands for follow‒up. We 

consider the thS  strategy as an omitted or reference strategy. For the multinomial logistic regression model, logits of the first 

1S  strategies are constructed with the reference strategy in the denominator 

 )(

;

)(

;

)(

; )/log( f

s

T

kf

f

kS

f

ks λv , 1,...,1  Ss , 

where kf ;v  is the 1)1( 
f

q  vector of explanatory variables and TTf

S

Tff ),...,( )(

1

)(

1

)(

 λλλ is the 1)1()1(  Sqq
ff  unknown vector 

parameter to be estimated. It follows that the S  conditional probabilities given the vector of explanatory variables are 

 1)(

;

1

1

)(

; )}exp(1{ 

 f

s

T

kf

S

s

f

kS λv ,  

and for 1,...,1  Ss  )exp( )(

;

)(

;

)(

;

f

s

T

kf

f

kS

f

ks λv  . 

 

Similarly, let’s define a vector of data collection mode indicator variables as 1)(

; dc

kml  if unit k  uses mode m , and 0)(

; dc

kml  if 

not, where Tdc

kM

dc

k

dc

k ll ),...,( )(

;

)(

;1

)( l  are realizations of independent distributed random variables according to a multinomial 

distribution, ),1( )(dc

kMMult φ , )(),...,( )()(

;

)(

;1

dc

kdc

Tdc

kM

dc

kk E lφ    is the vector of data collection mode probabilities with 1)(

;1  

dc

km

M

m  , 

and 
dcE  denotes expectation with respect to the data collection model. The mode of data collection for unit k  is 

characterized by the matrix )(dc

kΦ  which consists of the conditional probability )(

;|

dc

ksm  of using mode m  given that unit is 

assigned to follow‒up strategy s  defined by its components 

 )1|1Pr( )(

;

)(

;

)(

;|  f

ks

dc

km

dc

ksm ll . 

For example, for a 22  case ( 2MS ) it depends on two probabilities: )1|1Pr( )(

;1

)(

;1

)(

;1|1  f

k

dc

k

dc

k ll  and 

)1|1Pr( )(

;2

)(

;1

)(

;2|1  f

k

dc

k

dc

k ll . Hence 

 



















)(

;2|1

)(

;2|1

)(

;1|1

)(

;1|1)(

1

1
dc

k

dc

k

dc

k

dc

kdc

k



Φ . 

The marginal distribution of )(

;

dc

kml  is: 

 )(

;|

)(

;1

)(

;

)(

; )1Pr( dc

ksm

f

ks

S

s

dc

km

dc

km l   , Mm ,...,1 , 

where 1)(

;|1  

dc

ksm

M

m  . We consider the thM  mode as the reference mode. For the multinomial logistic regression model, logits 

of the first 1M  conditional modes are constructed with the reference mode in the denominator 

 )(

|;

)(

;|

)(

;| )/log( dc

sm

T

kdc

dc

ksM

dc

ksm λv , 1,...,1  Mm , 

where kdc;v  is the 1)1( dcq  vector of explanatory variables, TTdc

sM

Tdc

s

dc

s ),...,( )(

|)1(

)(

|1

)(

|  λλλ  and TTdc

S

Tdcdc ),...,( )(

|

)(

1|

)(
λλλ  is the 

1)1()1(  SMqq dcdc  unknown vector parameter to be estimated. It follows that the M  conditional probabilities of each mode 

given strategy s  and the vector of explanatory variables are 
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 1)(

|;

1

1

)(

;| )}exp(1{ 

 dc

sm

T

kdc

M

m

dc

ksM λv , 

and for 1,...,1  Mm  )exp( )(

|;

)(

;|

)(

;|

dc

sm

T

kdc

dc

ksM

dc

ksm λv  . 

 

3.2 Estimation of Regression Parameter 

 

The mode of data collection is known for a unit that responds at any time of data collection, while it is unknown for a unit 

that is censored.  Consequently the likelihood for the census observed data may be decomposed as 

 
)(

;}{)( ;|;|

)(

;1

f
km

l

ksMksR

f

ks

S

sk LLL Γ , (3.1) 

with k

dc
ksm

l

ksm

dc

ksm

M

mksR tfL
 }])([{

)(
;|

|

)(

;|1;|   and )1(

|

)(

;|1;| )}({ k

ksm

dc

ksm

M

mksM tfL
 

 , 

where TTTdcTf ),,( )()( βλλΓ , )(| ksm tf  is )( ktf  for mode m  of data collection under follow-up strategy s , 

 kk

kkk ItIttf
 


1

)>Pr()Pr()( , (3.2) 

1k  if unit k  is uncensored and 0k  if unit k  is censored. When unit k  is censored, either unit k  will respond at some 

future time period It >  or the unit will never respond. The function 
NΓ  such that )(maxarg ΓΓ

Γ
kkN   is the maximum 

likelihood estimator (MLE) of Γ , where )(log)( ΓΓ kk L . Under certain conditions the MLE is taken to be the solution of 

the system  

 0ΓsΓS  )()( kk
, (3.3) 

with 0Γs )}({ kE , where ΓΓΓs  /)()( kk   is the score function. For general sampling design with known positive inclusion 

probabilities, 
k , an design‒unbiased estimator of the EE defined by (3.3) is given by  

 0ΓsΓS  )()()(ˆ
kkk d , (3.4) 

where 
kkkd /)(1)(   are the design weights with )(1)(1  kk

 is the sample   membership indicator variable for unit 

k , )(1 condition  is the truth  function, i.e., 1)(1 condition  if the condition is true and 0)(1 condition  if not, ))(1(  kpk E , and 

pE  denotes expectation with respect to the sampling design. Starting with a guessed value, 
0Γ , then for ,...2,1b  updates are 

made using 

 )(ˆ)}(ˆ{ 1

1

11 



  bbbb ΓSΓJΓΓ
Γ

,  

where ΓΓSΓJ
Γ

 /)(ˆ)(ˆ T . The solution obtained by a Newton‒Raphson‒type iterative method gives the estimator Γ̂  of Γ .  

  

3.3 Estimation of the Parameters of Interest 

 

An estimator Θ̂  of the parameter )(yNΘ  associated with EE defined by (1.1) is defined as the solution of the weighted EE  

 0ΘvΘsΘS  )();(ˆ)(ˆ
kkk y . (3.5) 

A first set of weights is given by 
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 )(ˆˆ/)(ˆ com

kkkkk rd   , (3.5a) 

with ksm

dc

ksm

M

m

f

ks

S

sk ;|

)(

;|1

)(

;1    ,  

where )ˆ(ˆ Γkk   . The solution of (3.5) using the set of weights given by (3.5a) is denoted by )(ˆ comΘ . The above set of 

weights which combined the follow‒up strategies and modes of data collection may not be preferred when follow‒up 

strategies contribute toward explaining units behaviour. An alternative set of weights with separate strategies and modes is 

given by 

 )(

;|;|

)(

;|1

)(

;1
ˆ)ˆ/()(ˆ sep

kksmksm

dc

ksm

M

m

f

ks

S

skk rlld    . (3.5b) 

The solution of (3.5) using the set of weights given by (3.5b) is denoted by )(ˆ sep
Θ . 

 

Since respondents in one mode cannot be considered a simple random subsample of the sample, we defined an estimator 
mΘ̂  

of the parameter of interest )(; mNm yΘ  associated with EE (1.2) as the solution to the weighted EE  

 0ΘvΘsΘS  )();(ˆ)(ˆ
; mmkkmkm y . (3.6) 

Again, we consider two sets of weights. The combined set 

 )(

;

)(

;

)(

;;
ˆ)ˆ/)(ˆ/)((ˆ com

km

dc

km

dc

kmkkkkm lrd   , (3.6a) 

and the separate set 

 )(

;

)(

;|;|;|

)(

;|

)(

;1;
ˆ)}ˆˆ/({)(ˆ sep

km

dc

ksmksmksm

dc

ksm

f

ks

S

skkm rlld    ,  (3.6b) 

where )(

;|

)(

;1

)(

;
ˆˆˆ dc

ksm

f

ks

S

s

dc

km   . The solution of (3.6) using the set of weights given by (3.6a) is denoted by )(ˆ com

mΘ , while the 

solution of (3.6) using the set of weights given by (3.6b) is denoted by )(ˆ sep

mΘ . 

 

4. Linearization Variance Estimators and Optimal Resources Allocation 

 

4.1 Derivation of the Variance 

 

We use the linearization method of Demnati and Rao (2004, 2010) to derive variances and variance estimators. We first give 

a brief account of the Demnati‒Rao (DR) approach. Let TT

kg

T

k

T

kk ),...,,( ;;2;1 dddd   be a 1G  vector of random weights and 

),...,( ;;1 kgkk uuu   be a Gp  matrix of constants for Nk ,...,1  . Let 
kkk duU ˆ  be a linear combination and, using an 

operator notation, let )(uV  and )(u  denote respectively the variance of Û  and its variance estimator. DR expressed an 

estimator θ̂  and its induced parameter )ˆ(θθ E  as )(ˆ
d

Aθ f  and )( Aθ f , where 
d

A  is a NG  matrix with thk  column 

kd , 
u

A  is a NG  matrix with thk  column )( kk E dμ   and E  denotes expectation under random processes involved. The 

DR linearization variance and variance estimator of )(ˆ
d

Aθ f  are simply given by )~()ˆ(V zVθ DR
 and )()ˆ( z θDR

 

respectively, where  )~(V z  is obtained from )(V u  by replacing 
ku  by 

AA
A 

b
bz

b
|/)(~ T

kk f , and )(z  is obtained from )(u  
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by replacing 
ku  by 

db
bz

b AA
A  |/)( T

kk f , where 
b

A  is a NG  matrix of arbitrary real numbers with thk  column 

TT

kg

T

k

T

kk ),...,,( ;;2;1 bbbb  . Seeking clarity the rest of my work below considers only the case where values of the variable of 

interest y  are fixed. We now consider the derivation of the variance of a first compact form given by 

 
kkk duU ˆ , (4.1) 

with  2g , kkk d  )(;1d  and )()(;2 Γskkk d d , 

where 
k  is a dichotomous variable with expectation kkE  )( , and ),( ;2;1 kkk uuu  . We may decompose the variance of 

Û  as  

 ppp EVarVarE=Var VVUUU   )ˆ()ˆ()ˆ( . (4.2) 

Under independent mechanism on 
k , the first component )ˆ(UV   VarE p  of )ˆ(UVar  given by (4.2) is given by 

 T

kT

kkkk

T

kkkk

kkk
EE

E
uu



















)}()({})({

)}({)1(
)/1(

ΓsΓsΓs

Γs
V  , (4.3a) 

provided 0Γs )}({ kE . 

The second component })({ ;1 kkkkpp dVar  uV  of )ˆ(UVar  given by (4.2) is given by 

 T

llkkklkllkp ;1;1

1 )1( uu   V , (4.3b) 

where lkklkl  1 , kkkk    and )}(1)(1{  lkpkl E . 

The sum of (4.3a) and (4.3b) constitutes pVVV  )(u , the variance of Û  under (4.1).  

 

It follows from (3.4), (3.5) with (3.5a) and (3.6) with (3.6a) that the compact form given by (4.1) can be used to derive the  

variance of Γ̂ , )(ˆ comΘ  and )(ˆ com

mΘ  respectively. In the first case of Γ̂ , 0k;1u  and 1

;2 )}({~  Nk N
ΓJ

Γ
z  where 

NΓ  is the solution 

to the census EE 0ΓsΓS  )()( kk
, and baSaJ

b
 /)()( **

T  evaluated at ),(),( ** baba  ; in the second case of )(ˆ comΘ , 

kk r , kk  , )(/);(~
;1 NkNkk y ΓΘs z , and 1

;2 )}(){(~  NNk NN
ΓJΘJ

ΓΓ
z ; while in the third case of )(ˆ com

mΘ , )(

;

dc

kmkk lr , 

)(

;

dc

kmkk  , )}()(/{);(~ )(

;;;1 N

dc

kmNkNmkk y ΓΓΘs z , and 1

;2 )}(){(~  NNk NN
ΓJΘJ

ΓΓ
z . In the first case 

Γ
qG  , while in the second 

and third cases 
Γ

qG 1  where rdcf
qqqq 

Γ . 

 

We now consider a second compact form given by 

 
kkk duU ˆ , (4.4) 

with  2g , T

kBkBkkkk JJd ),...,)(( ;;;1;1;1 d  and )()(;2 Γskkk d d , 
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where T

kBkk JJ ),...,( ;;1J  is a vector of random variables distributed according to a multinomial distribution 

T

kJBk Mult ),1(~ ;pJ  with )(; kkJ E Jp  , kb;  is a dichotomous variable with expectation 
kbkbE ;; )( 
, and 

),...,( )(

;1

)1(

;1;1

B

kkk uuu  .We may decompose the variance of Û  as (4.2). 

Under independent mechanism on kb; , the first component )ˆ(UV   VarE p  of )ˆ(UVar  given by (4.2) under (4.4) is given by 

 












 
 T

k

T

kkk

T

kkk

T

k

T

kk

T

k

Tb

kkbkb

b

kb

kk
EE

Ep

;2;2;1;2

;2;1;1

)(

;1;;

)(

;1

)}()({})({

)}({}{
)/1(

uusu

ussuu

ΓsΓsΓs

Γs
V  , (4.5a) 

provided 0Γs )}({ kE , where kbkb

b

kbk J ;;

)(

;1;1  us  and 
kbkb

b

kbk p ;;

)(

;1;1  us . 

The second component })({ ;1 kkkpp dVar sV  of )ˆ(UVar  given by (4.2) under (4.4) is given by 

  T

lkklkllkp ;1;1

1 )1( ss  
V . (4.5b) 

 

The sum of (4.5a) and (4.5b) constitutes pVVV  )(u , the variance of Û  under (4.4).  

 

It follows from (3.5) with (3.5b) and from (3.6) with (3.6b) that the compact form given by (4.4) can be used to derive the 

variance of )(ˆ sep
Θ  and )(ˆ sep

mΘ  respectively. In the first case of )(ˆ sep
Θ , SMB  , )(

;|

)(

;;

dc

ksm

f

ksksm llJ  , ksmksm r ;|;  , 
ksmksm ;|;  , 

)(/);(~
;

)(

;1 NksNk

s

k y ΓΘs z , and 1

;2 )}(){(~  NNk NN
ΓJΘJ

ΓΓ
z ; while in the second of )(ˆ sep

mΘ , SB  , )(

;;

f

ksks lJ  , )(

;|;;

dc

ksmksks lr , 

)(

;|

)(

;;

dc

ksm

f

ksks  , )}()(/{);(~
;;;

)(

;1 NkmNkmNmk

s

k y ΓΓΘs z , and 1

;2 )}(){(~  NNk NN
ΓJΘJ

ΓΓ
z .  

 

4.2 Variance Estimation 

 

We first consider the estimation of the variance of the compact form given by (4.1). Under independent mechanism on 
k , 

an estimator of the first component of )ˆ(UVar  given by (4.2) is given by 

 T

k
T

kkkk

T

kkkk
kkk d uu




















)ˆ()ˆ()ˆ(

)ˆ()
ˆ

1(
)(2

ΓsΓsΓs

Γs
 , (4.6a) 

provided 0Γs )}({ kE , where 
k

ˆ
 is an estimator of k . 

If we use the HT variance estimator for arbitrary designs, then an estimator of the second component of )ˆ(UVar  given by 

(4.2) is given by 

 T

lklkkllkklk

T

kkkkkkkp sddd ;1;1;1;1

2 )1)(()(
ˆ

)1)(( uuuu    . (4.6b) 

 

The sum of the two terms (4.6a) and (4.6b) constitutes   p)(u , our estimator of the variance of Û  under (4.1). 
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In the first case of Γ̂ , 1

ˆ;2 )}ˆ(ˆ{  ΓJ
Γkz  where baSaJ

b
 /)(ˆ)ˆ(ˆ

ˆ

T  evaluated at )ˆ,ˆ(),( baba  ; in the second case of )(ˆ comΘ , 

kkk y ̂/)ˆ;(;1 Θsz , and 1

ˆˆ;2 )}ˆ(ˆ){ˆ(ˆ  ΓJΘJ
ΓΓkz ; while in the third case of )(ˆ com

mΘ , )ˆ/()ˆ;( )(

;;1

dc

kmkmkk y Θsz , and 

1

ˆˆ;2 )}ˆ(ˆ){ˆ(ˆ  ΓJΘJ
ΓΓkz . 

 

We now turn to the estimation of the variance of the compact form given by (4.4). Under independent mechanism on 
kb; , an 

estimator of the first component of )ˆ(UVar  given by (4.2) is given by 

 












 
 T

k

T

kkk

T

kkk

T

k

T

kk

T

k

Tb

kkbkb

b

kb

kk

J
sd

;2;2;1;2

;2;1;1

)(

;1;;

)(

;12

)ˆ()ˆ()ˆ(

)}ˆ(}ˆ{
))(

uusu

ussuu

ΓsΓsΓs

Γs
 , (4.7a) 

provided 0Γs )}({ kE , where kbkb

b

kbk p ;;

)(

;1;1

ˆ
ˆˆ  us , kb;

ˆ
  is an estimator of k , and kbp ;

ˆ  is an estimator of kbp ; . 

 

If we use the HT variance estimator for arbitrary designs, then an estimator of the second component of )ˆ(UVar  given by 

(4.2) is given by 

 T

lkkllkklk

T

kkkkkp ddd ;1;1;1;1

2 )1)(()(ˆ)1)(( ssss    . (4.7b) 

 

The sum of the two terms (4.7a) and (4.7b) constitutes   p)(u , an estimator of the variance of Û  under (4.4). 

 

In the first case of )(ˆ sep
Θ , ksmk

s

k y ;|

)(

;1
ˆ/)ˆ;( Θsz , and 1

ˆˆ;2 )}ˆ(ˆ){ˆ(ˆ  ΓJΘJ
ΓΓkz ; while in the second of )(ˆ sep

mΘ , 

)ˆˆ/()ˆ;( )(

;|;|

)(

;1

dc

ksmksmmk

s

k y Θsz , and 1

ˆˆ;2 )}ˆ(ˆ){ˆ(ˆ  ΓJΘJ
ΓΓkz . 

 

4.3 Optimal Resources Allocation 

 

To reduce nonresponse bias, units are subject to intensive follow‒up activities to obtain their cooperation. As this intensive 

follow‒up is extensive, optimal resources allocation within sampling, follow‒up, and data collection stages of the survey 

design is needed to make wise use of resources compared to the quality of the estimates. The portion of survey design that 

incorporates sampling, follow‒up and data collection consists of: a) determining the probability of selection for each unit; b) 

determining the allocation probability of each follow‒up strategy to each unit; c) selecting the sample; d) assigning a 

follow‒up strategy to each unit to get their cooperation; e) collecting data from respondents; f) integrating results from 

sampling, follow‒up and data collection activities into the estimation step of the ultimate parameter of interest; and, g) 

evaluating the impact of sampling errors as well as errors due to data collection and nonresponse on the ultimate estimator. A 

question that is of great importance is how a portion of resources that is allocated to a given stage of the survey design 

influences the estimator of the ultimate parameter of interest? Or simply, what is the optimal portion of global resources that 

should be allocated to a given stage of the survey design in comparison to the other stages? In general, a survey design is a 

large and complex program such that the ultimate estimator response to resources changes in each stage is not transparent. As 
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there is no general measure that would capture all information on the impact of resources allocation on the ultimate estimator, 

the survey producer tends to combine various measures to get a broader effect and interactions between different stages. To 

allocate optimally resources within stages of the survey design, we determine for each unit simultaneously: a) the probability 

of selection in the sample; and b) the probability of allocation of each follow‒up strategy among a set of strategies for each 

unit. This is done either by minimizing the variance for a given survey global cost; or in the case of multiple parameters of 

interest by minimizing the global cost subject to constraints on the variances 

 

The global cost of sampling, follow‒up, and data collection activities can maybe expressed as   

 )()()( dcfp CCCC  . (2.2) 

where )()( )(1 p

kkk

p cC   is the component associated with sampling cost, )(

;s

)(

;1

)( )(1 f

k

f

ks

S

skk

f clC   is the component 

associated with follow‒up cost, and )(

;;|

)(

;|

)(

;1

)( )(1 dc

kmksm

dc

ksmm

f

ks

S

skk

dc crllC    is the component associated with data collection 

cost. Here, )( p

kc  is the sampling cost for unit k , )(

;

f

ksc  denotes the cost associated with follow‒up strategy s  ( Ss ,...,1 ) for 

unit k , and )(

;

dc

kmc  denote the data collection cost associated with mode m  ( Mm ,...,1 ) for unit k . Since the above global cost 

is random, we consider its expectation given by 

 CCCCCE dcfp  )()()()( , (4.8) 

where )()( p

kkk

p cC  , )(

;

)(

;1

)( f

ks

f

ks

S

skk

f cC   , and )(

;;|

)(

;|1

)(

;1

)( dc

kmksm

dc

ksm

M

m

f

ks

S

skk

dc cC    . 

To create a design in the case of one parameter of interest, we determine the optimal 
k  and )(

;

f

ks  ( SsNk ,...1;,...1  ) such 

that the variance, )Θ̂(Var , is minimized subject to constraints on the expected global cost maxCC  , where 
maxC  is the survey 

global cost limit. 

 

In the case of )1(  parameters of interest, we determine the optimal 
k  and )(

;

f

ks  such that the expected global cost given by 

(4.8) is minimized subject to constraints on   variances:  

  V)Θ̂( Var ,  ,...,1 ,  

where 
V  are specified tolerances, and )Θ̂( Var  is the variance of the estimator Θ̂  for the th  parameter of interest 

 ,...,1 . For example, one could specify an upper limits, 
 , on the coefficient of variation of Θ̂  so that 

2)}Θ̂({V  E . 

 

Concluding Remarks 

 

We introduced discrete‒time hazard to the analysis of response indicators in surveys and censuses. The proposed approach 

facilitates examination of the shape of the hazard function. Since inspection of the shape of the hazard function indicates 

when a response is most likely to occur, and how the probability varies over both time and follow‒up treatments, the 

description of the shapes of hazard function have an important role to play in survey quality and cost. We also used 
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regression analysis to investigate the effect of mixed‒mode on the response probability. Estimators of model parameters as 

well as estimators of parameters of interest are given, and associated variance estimators are studied under mixed‒mode 

surveys. Finally, optimal resources allocation within stages of the mixed‒mode survey design is determined to make wise use 

of global survey resources in terms of the quality of the ultimate estimate.  

 

Currently, we are studying the issue of reducing side effect of prior information on survey design. It is difficult to design a 

survey because prior information on response rates and the like is likely generated from a different random process than the 

target one governing the survey to be designed, and the impact on the properties of the estimator can be significant. 

Nowadays, computer‒assisted data collection methods provide an instant variety of observations on the target random 

process governing the survey under consideration. These data and paradata enable the survey producer to make decisions 

regarding the need for methodology‒process revision. This work will be presented at the 2016 Joint Statistical Meeting. 
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